COURSE TITLE : ENGINEERING SCIENCE LAB (For Semester I & II)

[Engineering Physics & Engineering Chemistry Lab]

COURSE CODE : 2007
COURSE CATEGORY : F
PERIODS PER WEEK : 3
PERIODS /SEMESTER (I & II): 90

CREDITS : 3

ENGINEERING PHYSICS LAB

TIME SCHEDULE

SL.No	Name of module	Course objective	Total period in 1 and 2 semester					
			Instructional	Test	Total			
1	Measurement and calculation of different physical quantities	1:1 1:2 1:3	Practical: 42	3	45			
Total periods 1 and 2 semester 45								

On completion of the course the student will be able to:

- 1. To measure volume of a cylinder using vernier calipers.
- 2. To measure volume of a wire using screw gauge.
- 3. To determine focal length of a convex lens by displacement method.
- 4. To determine the velocity of sound in air at room temperature using resonance column.
- 5. To determine spring constant using Hooke's law..
- 6. To determine acceleration due to gravity using simple pendulum.
- 7. To verify law of resistances.
- 8. To determine specific resistance of material using Meter Bridge.
- 9. To determine Internal Resistance of a Primary Cell using Potentiometer.
- 10. To plot characteristics of photoelectric cell (photoelectric current vs intensity of light and voltage applied)
- 11. To determine the mass of the given body using moment bar.
- 12. To determine the mass of a body by parallelogram method and by Lami's theorem.
- 13. To verify Ohm's law and to determine the resistance of the given wire.

- 14. To determine the coefficient of viscosity of a highly viscous liquid.
- 15. To determine the relative density using U- tube apparatus.

LIST OF PRACTICAL EXPERIMENTS – PHYSICS

- 1. Vernier calipers
- 2. Screw gauge
- 3. Convex lens
- 4. Resonance column
- 5. Hooke's law
- 6. Simple pendulum
- 7. Law of resistances
- 8. Meter bridge
- 9. Potentiometer
- 10. Photoelectric cell
- 11. Moment bar
- 12. Concurrent forces(mass of the body)
- 13. Ohm's law
- 14. Stoke's method for viscosity
- 15. U tube

ENGINEERING CHEMISTRY LAB

SL.No	Name of module	Course objective	Total period in 1 and 2 semester					
			Instructional	Test	Total			
1	Quantitative analysis(Volumetric analysis)	1:1 1:2 1:3	Theory: Practical: 39	- 6	45			
Total periods 1 and 2 semester 45								

TIME SCHEDULE

On completion of the course the student will be able to:

Practical Volumetric Analysis

Single Titration

- 1. Standardisation of HCL
- 2. Standardisation of NaOH Double Titrations
- 3. Estimation of NaOH
- 4. Estimation of KOH
- 5. Estimation of Na2 CO3
- 6. Estimation of K2 CO3
- 7. Estimation of HCl
- 8. Estimation of HNO3
- 9. Estimation of H2 SO4
- 10. Estimation of Oxalic acid
- 11. Standardisation of KMnO4
- 12. Estimation of Oxalic acid
- 13. Estimation of Fe 2+ ion
- 14. Estimation of Mohr's Salt
- 15. Determination of PH of Solution
- 16. Estimation of Zinc using EDTA
- 17. Estimation of Magnesium Using EDTA

Reference:

Prof. A. O. THOMAS – PRACTICAL CHEMISTRY – Eight Edition 2000