TED (15) - 4032		Reg. No
(REVISION 2015)		Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2018

DIGITAL ELECTRONICS AND MICROPROCESSORS

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

 $(5 \times 2 = 10)$

- Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. List the four types of number system used in digital system.
 - 2. State the De Morgan's theorems.
 - 3. Define the term 'modulus of a counter'.
 - 4. Draw the symbol of clocked R-S flip flop and its truth table.
 - 5. List the registers contained in the special purpose register in a 8085 microprocessor.

PART --- B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Explain the steps to convert a decimal number (527.74)₁₀ into binary and hexadecimal number.
 - 2. Draw the logic circuit for the expression $Y = B + \overline{B}C + AB$ using NAND gate.
 - 3. List the applications of flip flops.
 - 4. Explain the different modes of operations in shift register.
 - 5. Differentiate between synchronous and asynchronous counters.
 - 6. Explain the different addressing modes of 8085.
 - 7. Compare the TTL and CMOS gates.

 $(5 \times 6 = 30)$

9

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit — I (a) Derive the EX-OR gate from basic gates and draw its symbol and truth table. 6 Ш (b) Illustrate the procedure to add the following numbers in binary and verify the 9 result $(AF1.B3)_{16} + (FFF.E)_{16}$. (a) Explain the steps for adding the decimal numbers (-118), and (-32), using IV 6 eight bit 2's compliment arithmetic method. 9 (b) Explain the operations of common logic gates in digital circuits. Unit --- II (a) Explain the logic diagram of 4×1 multiplexer with an ENABLE input. 6 (b) Explain the operation of master slave flip flop constructed with J-K flip flop. 9 OR 6 VI (a) Explain the working of octal-to-binary encoder. (b) Explain the operation of R-S flip flop and draw the implementation of its 9 active - LOW input and active - HIGH input using NAND gates. Unit — III (a) Explain the operation of four bit UP/DOWN counter. 6 VII 9 (b) Explain the modes of operation of a D/A converter. (a) Explain the operation of a four bit synchronous counter with suitable wave form. VIII 6 9 (b) Explain the major performance specifications of an A/D converter. Unit -- IV 6 ΙX (a) Explain the instruction sets of 8051 microprocessor. (b) With neat sketch explain the functional block diagram of 8085 microprocessor. 9 OR (a) Draw the schematic pin diagram of 8085 microprocessor. 6 X

(b) Explain the features of 8085 microprocessor.