		V 1
TED (15) - 2031 (REVISION - 2015)	-	Noure
DIPLOMA EXAMIN	IATION IN ENGINEERING/T COMMERCIAL PRACTICE —	ECHNOLOGY/
BASI	C ELECTRICAL ENGINEERING	
		[Time: 3 hours
	(Maximum marks: 100)	·
•	PART — A	
	(Maximum marks: 10)	
		Marks
I Answer all questions in	one or two sentences. Each question car	rries 2 marks.
1. State the current div	vision rule.	
2. State specific resista	ance.	
3. Define electric flux.		
4. Define absolute perr	meability.	•
5. What do you under	stand by dynamically induced EMF?	$(5 \times 2 = 10)$
	_e ! PART — B	
	(Maximum marks: 30)	
II Answer any five of the	following questions. Each question carrie	es 6 marks.
1. Explain the phenom	nenon of electric shock.	
2. Explain Fleming's F	Right Hand rule. List the appilications.	
3. Compute the energy	y spent for a given period of time in an e	electric circuit.
4. State superposition	theorem.	
5. State and explain re	eciprocity theorem.	

Derive the expression for capacitance connected in series.

7. Draw the B-H curve and explain the various regions in the curve.

 $(5 \times 6 = 30)$

Marks

PART -- C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit -- I

III (a) State & explain Kirchhoff's voltage and current law.

8

(b) A coil consists of 2000 turns of copper wire having a cross sectional area of 0.8mm^2 . The mean length per turn is 80 cm and the resistivity of copper is $0.02 \mu\Omega$ -m. Find the resistance of the coil and power absorbed by the coil when connected across 110V DC supply.

7

Or

IV (a) A copper conductor has its specific resistance of 1.6 ×10⁻⁶Ωcm at 0°C and a resistance temperature coefficient of 1/254.5 per°C at 20°C.
Find (i) the specific resistance and (ii) the resistance - temperature coefficient at 60°C.

8

(b) Derive the equation for temperature coefficient of resistance.

7

Unit - II

V (a) Compute the effective resistance of DC series, parallel combination of resistances.

8

(b) Calculate the effective resistance of the following combination of resistances and the voltage drop across each resistance when a P.D. of 60 V is applied between points A and B.

7

VI (a) Find the different currents flowing in the branches and voltage across $60~\Omega$ resistor using superposition theorem.

8

7

(b) State and explain Thevenin's Theorem.

Marks

PART --- C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit -- I

III (a) State & explain Kirchhoff's voltage and current law.

8

(b) A coil consists of 2000 turns of copper wire having a cross sectional area of 0.8mm^2 . The mean length per turn is 80 cm and the resistivity of copper is $0.02 \mu\Omega$ -m. Find the resistance of the coil and power absorbed by the coil when connected across 110V DC supply.

7

Or

IV (a) A copper conductor has its specific resistance of 1.6 ×10⁻⁶Ωcm at 0°C and a resistance temperature coefficient of 1/254.5 per°C at 20°C. Find (i) the specific resistance and (ii) the resistance - temperature coefficient at 60°C.

8

(b) Derive the equation for temperature coefficient of resistance.

7

Unit -- II

V (a) Compute the effective resistance of DC series, parallel combination of resistances.

8

(b) Calculate the effective resistance of the following combination of resistances and the voltage drop across each resistance when a P.D. of 60 V is applied between points A and B.

•

VI (a) Find the different currents flowing in the branches and voltage across 60 Ω

resistor using superposition theorem.

8

(b) State and explain Thevenin's Theorem.

Marks UNIT -- III 8 (a) Describe the construction and concepts of elementary capacitor. (b) Find the equivalent capacitance of the circuit shown in figure. All capacitances are in µF. 7 OR VIII (a) Derive the expression of energy stored in a capacitor. 8 (b) An air-capacitor of capacitance 0.005µF is connected to a direct voltage of 500 V, is disconnected and then immersed in oil with a relative permittivity of 2.5. Find the energy stored in the capacitor before and after immersion. 7 UNIT --- IV 8 IX (a) What is hysteris loss? On what factors does it depend? 7 (b) Discuss the Absolute permeability and Relative permeability. (a) Derive the expression for the energy stored in an inductor. 8 (b) State and explain Faraday's laws of electromagnetic induction. 7