	•	
TED (15) – 3042		Reg. No
(REVISION — 2015)		Signature
	OMA EXAMINATION IN ENGIN ANAGEMENT/COMMERCIAL PRA	
	DIGITAL ELECTRO	NICS
		[Time: 3 hours
	(Maximum marks: 10	00)
	PART — A	
	(Maximum marks: 1	0)
		Marks
I Ans	wer all questions in one or two sentences. I	Each question carries 2 marks.
1.	Give any two alphanumeric codes.	
2.	What is a combinational logic circuit? Give	an example.
3.	What is the basic difference between a latch	and a flip-flop ?
4.	Define resolution of a DAC.	

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Briefly explain excess-3 codes and gray coles.

Give the output expressions of a half adder circuit.

- 2. Explain the operation of a 4 to 1 multiplexer.
- 3. Explain a parallel adder with diagram.
- 4. Distinguish between synchronous and asynchronous counters.
- 5. Implement AND, OR and XOR gates using NAND gate only.
- 6. Explain the working of a serial in serial out shift register with diagram.
- 7. Explain a counter type ADC.

 $(5 \times 6 = 30)$

 $(5 \times 2 = 10)$

5

PART — C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

		Unit — I			
III	(a)	Perform the following conversions.			
	•	(i) $(C5E2)_{16} = (\dots)_2$ (ii) $(9AF)_{16} = (\dots)_{10}$			
		(iii) $(110.001)_2 = (\dots,)_{10}$ (iv) $(11.75)_{10} = (\dots,)_2$	8		
	(b)	Perform: (i) $-43 + (-78)$ (ii) $+83 - (+16)$ using binary arithmetic.	7		
		Or			
IV	(a)	Minimize the following function using K-map and realize using logic gates.			
		$F = \Sigma m (0, 1, 2, 5, 8, 10, 11, 14, 15)$	10		
	(b)	Write short note on BCD code.	5		
		Unit — II			
V	(a)	Design a 4 bit binary to gray code converter.	12		
•	(b)	Explain the levels of integration: SSI, MSI, VLSI.	3		
	OR				
VI	(a)	Define the terms - V _{IL} , V _{OH} , V _{OL} , V _{OH} .	8		
	(b)	Compare ECL and CMOS logic families.	7		
		Unit — III			
VII	(a)	Draw and explain SR flip flop using NAND gates.	8		
	(b)	With necessary diagrams explain a 4 bit ring counter.	7		
		OR			
VIII	(a)	Draw and explain JK flip flop with NAND gates.	8		
	(b)	Explain the synchronous and asynchronous inputs of flip-flops.	7		
		Unit — IV			
ΙX	(a)	Draw and explain a mod-8 synchronous counter using JK flip-flops.	9		
	(b)	Explain the working of a 4 bit weighted resistor type DAC.	6		
Or					
X	(a)	Explain a successive approximation ADC with diagram.	10		

(b) Draw and explain the truth table of a mod-8 up/down counter.