COURSE TITLE	: FUNDAMENTALS OF AC SYSTEMS

COURSE CODE	: 3033
COURSE CATEGORY	: B
PERIODS/WEEK	: 4
PERIODS/SEMESTER	: 60
CREDITS	: 4

TIME SCHEDULE

MODULE	TOPICS	PERIODS
1	Principle of alternating voltage generation	15
2	Alternating current circuits	15
3	Polyphase circuits	15
4	Measurement of power in three phase circuits	15
	Total	60

Course Outcome:

SI.	Sub	On completion of this course the student will be able:
1	1	To comprehend the method of generation of voltage.
2	1	To understand the parameters and its effect in alternating current system.
	2	To understand the different types of interconnection and its effects.
3 <u>1</u> 2	1	To comprehend the generation of poly phase voltages.
	2	To understand the interconnections of poly phase system.
4	1	To understand the power measurement in poly phase system.
	2	To understand the effect of power factor in system.

Specific Outcome

MODULE I Principle of alternating voltage generation

- 1.1.1 To describe the generation of alternating voltages.
- 1.1.2 To explain the advantage of AC supply system.
- 1.1.3 To derive the equations of alternating voltage and currents.
- 1.1.4 To identify term related to alternating current
 - i. instantaneous value
 - ii. maximum value
 - iii. average value
 - iv. RMS value
- 1.1.5 To explain the term form factor and crest factor.
- 1.1.6 To illustrate vector representation of alternating quantities.
- 1.1.7 To describe the addition of alternating quantities.
- 1.1.8 To describe the addition and substation of vectors.
- 1.1.9 To compute simple problems.

MODULE II Alternating current circuits

- 2.1.1 To illustrate AC through pure inductances.
- 2.1.2 To illustrate AC through pure capacitor.
- 2.1.3 To illustrate AC through resistance and inductor.
- 2.1.4 To illustrate AC through resistance, inductor and capacitor.
- 2.1.5 To compute simple problems.
- 2.1.6 To describe phasor algebra.
- 2.1.7 To describe series circuits
- 2.1.8 To describe parallel circuits
- 2.1.9 To describe resonance and Q factor.
- 2.1.10 To compute problems.

MODULE III Polyphase circuits

- 3.1.1 To describe the generation of poly phase voltages.
- 3.1.2 To illustrate phase sequence, numbering of phases, interconnection of phases.
- 3.1.3 To explain the advantages of poly phase system.
- 3.1.4 To distinguish star connection.
- 3.1.5 To distinguish delta connections.
- 3.1.6 To compare star and delta system.
- 3.1.7 To distinguish the balanced star/ delta and delta / star conversions.
- 3.1.8 To compare star and delta connected lighting load.

- 3.1.9 To differentiate single phase and three phase systems.
- 3.1.10 To compute simple problems.

MODULE IV Measurement of power in three phase circuits

- 4.1.1 To explain the power measurement in AC circuits.
- 4.1.2 To describe the various methods for power measurement in three phase circuits.
- 4.1.3 To describe three wattmeter method for power measurement.
- 4.1.4 To describe two wattmeter method for power measurement.
- 4.1.5 To describe single wattmeter method for power measurement.
- 4.1.6 To distinguish between balanced load and unbalanced load.
- 4.1.7 To illustrate power factor in leading and lagging.
- 4.1.8 To describe the method of finding reactive volt-ampere by using two wattcmeters.
- 4.1.9 To describe the method of finding reactive volt-ampere by using one wattmeter in balanced load
- 4.1.10 To describe the methods of improving power factor.
- 4.1.11 To identify various power correction equipment.

CONTENT DETAILS

MODULE – I

Single turn alternator - voltage equation - $e=Blv \sin\theta$ -simple problems – Advantages of - system – instantaneous value, peak value - r.m.s ,average, form factor, peak factor, waveform – cycle - Time period – frequency - simple problems - Phasor representation of alternating quantities - vector diagrams using r.m.s. Values - Addition and subtraction of alternating quantities by vector method - simple problems in Vector.

MODULE – II

A.C through pure R, L,C-equation R, X_L,X_C, Impedance Z - Phasor Algebra - Mathematical representation of vectors - polar form, Rectangular form, Complex form and trigonometric forms -conversion from polar form to rectangular form and vice versa - Addition, subtraction, multiplication & division of alternating quantities in these forms - Series circuits - through R L, R C, and R, L C circuits – active, Reactive and Apparent power, Power factor, Resonance in R-L-C series circuits - problems in series circuits (In polar and rectangular form) - Parallel A.C circuits - phasor method - solving problems in RL and RC parallel circuit - Resonance in parallel circuit-conductance – susceptance.

MODULE – III

Generation of poly phase-Advantages of 3 Φ system over 1 Φ system - phase sequence-interconnection - star/delta-advantages of star system – conversion from star/delta – problems in 3 phase – voltage & current relation in star/delta-power - problems

MODULE – IV

Power measurements in circuits - power factor - power measurements in balanced load by 1 wattmeter, 2 wattmeter, 3 wattmeter – power, p.f, Reactive Volt-ampere- simple problems - Balanced and unbalanced load - Methods of improving p.f - vector diagram - p.f correction-simple problems

REFERENCES

- 1. B.L Thereja. Electrical Technology. Vol-I. S Chand & co.
- 2. Metha.V.K, Rohit Metha. Basic Electrical Engineering. S Chand & co.
- 3. Ashfaq Husain. Basic Electrical Engineering. Dhanapath Rai & co.