COURSE TITLE	: DC MACHINES LAB
COURSE CODE	: 4039
COURSE CATEGORY	: B
PERIODS/WEEK	: 6
PERIODS/SEMESTER	: 84
CREDITS	: 3

Course Outcome:

SI.	Sub	On completion of this course the student will be able:	
	1	To analyze the performance characteristics of shunt motor.	
	2	To analyze the performance characteristics of series motor.	
1	3	To analyze the performance characteristics of compound motor.	
	4	To analyze the characteristics of a) Self excited DC generators b) Separately excited DC generators	

LIST OF EXPERIMENTS

- 1. To collect the name plate data and identify power supply controls and terminals of DC machines.
- 2. To dismantle and assemble a DC machine and identify parts.
- 3. To dismantle and assemble two points, three point and four point starters and identify parts.
- 4. To run a separately excited DC generator at rated conditions and plot OCC, determine critical speed and resistance. Deduce the same for different speeds.
- 5. To run a self excited DC generator at rated conditions and to plot OCC to determine critical speed and critical resistance. Deduce the same for different speeds.
- 6. To determine efficiency of a DC series generator at different loads.
- 7. To determine efficiency of a DC compound generator at different loads as;
 - i. Cumulative compound generator.
 - ii. Differential compound generator.
- 8. To control the speed of a DC shunt motor in field control method and plot the field current v/s speed curve.
- 9. To control the speed of a DC shunt motor in armature control method and plot the field current v/s speed curve.
- 10. To run a DC shunt motor and plot performance curves by direct loading.
- 11. To run a DC series motor and plot performance curves by direct loading..
- 12. To predetermine efficiency of a DC shunt machine (by conducting Swinburne's test) as a generator and as a motor.
