TED (15) – 3031 (REVISION — 2015)

Reg. No.	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2019

ANALOG DEVICES AND CIRCUITS

[*Time* : 3 hours

(Maximum marks : 100)

PART — A

(Maximum marks : 10)

Marks

I Answer *all* questions in one or two sentences. Each question carries 2 marks.

- 1. Define peak inverse voltage of a diode.
- 2. Draw the frequency response curve of an RC coupled amplifier.
- 3. List out the advantages of crystal oscillator.
- 4. List out the characteristics of an ideal op-amp.
- 5. Discuss the virtual ground in op-amp.

PART — B

(Maximum marks : 30)

II Answer any *five* of the following questions. Each question carries 6 marks.

- 1. Explain the working of zener diode as voltage regulator.
- 2. Explain the positive clamping circuit with the help of diagrams and waveforms.
- 3. Differentiate class A and class B amplifier.
- 4. List out different types of oscillators.
- 5. Explain the working of tuned collector oscillator.
- 6. Discuss substractor using op-amp.
- 7. Explain half wave precision rectifier.

 $(5 \times 2 = 10)$

PART — C

(Maximum marks : 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

- Unit — I

III	(a)	Explain the working of voltage regulator using 7805 IC.	8
	(b)	Explain the working of bridge rectifier with filter circuit and draw the wave forms.	7
		OR	
IV	(a)	Explain the working of unbiased positive and negative shunt clippers.	8
	(b)	Compare half wave and full wave rectifiers.	7
		Unit — II	
V	(a)	Explain the working of RC coupled amplifier.	8
	(b)	Explain the operation of complementary symmetry push pull amplifier.	7
		Or	
VI	(a)	Explain the operation of class A amplifier.	8
	(b)	Explain the operation of push pull amplifier.	7
		Unit — III	
VII	(a)	Draw a neat sketch of RC phase shift oscillator and explain its working.	8
	(b)	Describe the working of crystal oscillator.	7
		Or	
VIII	(a)	Draw and explain the working of Hartely oscillator.	8
	(b)	Explain astable multivibrator using 555 IC.	7
		Unit — IV	
IX	(a)	Explain the working of a non inverting amplifier using op-amp.	8
	(b)	Describe adder using op-amp.	7
		Or	
Х	(a)	Draw and explain integrator using op-amp.	8
	(b)	Explain op-amp as comparator.	7

Marks