TED (15) – 2031 (REVISION – 2015)

SECOND SEMESTER DIPLOMA EXAMINATION IN ELECTRICAL AND ELECTRONICS ENGINEERING — MARCH, 2016

BASIC ELECTRICAL ENGINEERING

[*Time* : 3 hours

Reg. No.

Signature

(Maximum marks : 100)

PART - A

(Maximum marks : 10)

Marks

 $(5 \times 2 = 10)$

- I Answer the following questions in one or two sentences. Each question carries 2 marks.
 - 1. Define temperature co-efficient of resistance.
 - 2. Four 1Ω resistances are connected in parallel. What is the equivalent resistance ?
 - 3. If charge $Q = 144 \ \mu C$ and capacitance $C = 6 \ \mu F$, find voltage V.
 - 4. Define reluctance and state its unit.
 - 5. Write the units of magnetic flux and mmf.

PART—B

(Maximum marks : 30)

II Answer any five questions from the following. Each question carries 6 marks.

- 1. A heater wire of length 50cm and 1mm² in cross-section carries a current of 2A when connected across a 2V battery. What is the resistivity of the wire ?
- 2. Draw a DC network and write mesh equations applying Kirchhoff's voltage law.
- 3. A current of 20A goes through two ammeters A and B connected in series. The p.d across A is 0.2V and across B is 0.3V. Find how the same current will divide between A and B when they are connected in parallel ?
- 4. State and explain reciprocity theorem.
- 5. State and explain the laws of electrostatics.
- 6. State Faradays laws of electromagnetic induction.
- 7. Draw B-H curve and mark the various regions in the graph.

 $(5 \times 6 = 30)$

PART - C

2

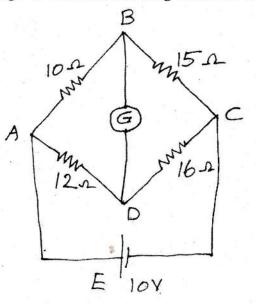
(Maximum marks : 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit – I

III (a) State Ohm's law.

- (b) Draw atomic structure of copper atom. Atomic number = 29, atomic weight = 64.
- (c) A wheatstone bridge circuit has $R_{AB} = 60\Omega = R_{CD}$, $R_{BC} = R_{AD} = 40\Omega$, $R_{BD} = 100\Omega$. Supply is connected to points A and C. If the current drawn from the supply is 100mA, find the currents through R_{BC} , R_{CD} and R_{BD} .


OR

IV (a) Define electric power. Write the relationship between V, I, R and P.

- (b) Calculate the energy spent for a 60W lamp working 8 hours day for one year.
- (c) Two conductors, one of copper and the other of iron, are connected in parallel and at 20°C carry equal currents. What proportion of current will pass through each, if the temperature is raised to100°C. Assume α for copper as 0.0042 and for iron as 0.006 per °C at 20°C.

Unit – II

- V (a) Write any three properties of series circuit.
 - (b) State super position theorem.
 - (c) The galvanometer in figure below has a resistnce of 5Ω . Find the current through the Galvanometer using Thevinin's Theorem.

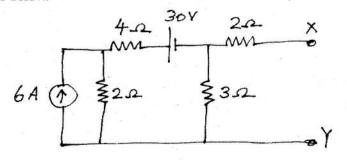
9

3

9

3

3


9

3

3

3

Write any three properties of parallel circuit.
(b) State max. power transfer theorem.
(c) Find Norton's equivalent for the network to the left of terminals X-Y in figure shown below.

Unit – III

- VII (a) What is meant by dielectric strength of a medium? 3 3 (b) Relative permittivity of mica is 5. What is its absolute permittivity? (c) A 10 µF, 20 µF and a 40 µF capacitors are connected in series to a 399 volt source emf. (i) What is the equivalent capacitance ? (ii) What is the magnitude of charge across each capacitor? (iii) What is the potential difference across each capacitor ? 9 OR VIII (a) Write any three applications of capacitors. 3 (b) Calculate the total capacitance, if three capacitors of capacitance 2 μ F, 4 μ F and 6 µF are connected in 3 (i) Series (ii) Parallel 9 (c) Derive the expression for energy stored in a capacitor. UNIT - IVIX (a) State Fleming's left hand rule. 3 3 (b) State Lenz's law. (c) A mild steel ring having a cross-sectional area of 500mm² and a mean circumference of 400mm has a coil of 200 turns wound uniformly around it. Calculate : (i) The reluctance of the ring (ii) The current required to produce a flux of 800 μ Wb in the ring. Take relative permeability of mild steel as 400 at the given flux density. 9 OR X (a) Define self inductance. 3 (b) State Fleming's right hand rule. 3
 - (c) Derive expression for self inductance and mutual inductance.

3

3

9

9