TED (15) – 2031

Reg. No.

Signature

(REVISION -2015)

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2017

BASIC ELECTRICAL ENGINEERING

[*Time* : 3 hours

(Maximum marks : 100)

PART — A

(Maximum marks : 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. What is resistance of a substance ?
 - 2. Define specific resistance of material.
 - 3. State condition for maximum power transfer.
 - 4. Define the break down voltage.
 - 5. Define self-inductance.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks : 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Calculate the effective resistance of the following combination of resistances and the voltage drop across each resistance when a P.D of 60v is applied between point A and B.

2. Explain effect of temperature on resistance.

3. State and explain Norton's theorem.

- 4. Derive condition for maximum power transfer in a network.
- Calculate the effective capacitance of the capacitors c1, c2, c3 in (a) parallel
 (b) in series.
- 6. Derive an expression for energy stored in a capacitor.
- 7. State laws of magnetic force.

 $(5 \times 6 = 30)$

[10]

PART — C

(Maximum marks : 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

III (a) State Kirchhoff's laws.

- (b) In a residential house the following are the loads connected :
 - (i) 60 w lamps--6 nos. 5 hrs. a day(ii) 40 w lamps--4 nos. 4 hrs. a day
 - (iii) 1500 w heater -- 1 no. 2 hrs. a day
 - (iv) Refrigerator 746 w 8 hrs. a day

If the electricity is Rs. 2.6/unit, what will be the monthly electricity charge ?

Or

- IV (a) Explain Electric Power.
 - (b) The filament of a 60-watt, 230 V lamp has normal working temperature of 2000°C. Find the current flowing in the filament at the instant of switching, when the lamp is cold. Assume the temperature of cold lamp to be 15°C and $\alpha = 0.005/°C$.

(b) Using Norton's theorem, find the current in 8Ω resistance of the network shown.

Or

- VI (a) State and explain Maximum power transfer theorem.
 - (b) In the network shown, find the different branch current by super-position theorem.

7

Marks

7

8

7

8

8.

3

Unit --- III

VII (a) Illustrate the potential gradient.

(b) Three capacitors of capacitance $2\mu F$, $4\mu F$ and $6\mu F$ respectively are connected in series to a 220 V dc. Supply. Find (i) the total capacitance (ii) charge on each capacitor and (iii) p.d. across each capacitor.

Or

VIII (a) Derive an expression for potential at point in (a) Air and (b) medium

(b) A parallel plate capacitor is charged to 50μ .F at 150 V. It is then connected to another capacitor of capacitance 4 times of the first capacitor. Find the loss of energy.

UNIT — IV

- IX (a) State Coulomb's law.
 - (b) A coil of 200 turns of wire is wound on a magnetic circuit of reluctance 2000AT/mWb. If a current of 1A flowing in the coil is reversed in 10 ms, find the average e.m.f. induced in the coil.

Or

- X (a) Draw and Explain B-H curve.
 - (b) Compare magnetic circuit and electric circuit.

7.

8 .

7

8

Marks

7

8

7

8