		eg. No
	DIPLOMA EXAMINATION IN ENGINEERING/T MANAGEMENT/COMMERCIAL PRACTICE —	TECHNOLOGY/
	DC MACHINES	
		[Time: 3 hours
	(Maximum marks: 100)	
	PART — A	
	(Maximum marks: 10)	
		Marks
I	Answer all questions in one or two sentences. Each question carries 2 marks.	
	1. Explain properties of copper.	
	2. What is known as grain oriented sheet steel?	
	3. Write the classifications of DC Generator according to field excit	tation.
	4. Define armature reaction.	
	5. Name the different losses in a DC Machine.	$(5 \times 2 = 10)$
	PART — B	
	(Maximum marks : 30)	
II	Answer any <i>five</i> of the following questions. Each question carries of	6 marks.
	1. Explain hysteresis loss and method of reducing it.	
	2. Explain the term coercive force and residual magnetism.	
	3. Derive the emf equation of a DC Generator.	
	4. Explain the use of inter poles with figure.	
	5. What are the effects of armature reaction? Explain.	
	6. Explain the power stages of a DC Motor.	

7. Explain the need of starters for starting DC Motors.

 $(5 \times 6 = 30)$

Marks

PART — C (Maximum marks: 60) (Answer one full question from each unit. Each full question carries 15 marks.) Unit -- I 7 Ш (a) Compare the properties of copper and aluminium. (b) Explain the properties of grain oriented sheet steel. 8 O_R IV (a) Draw and explain B-H curve. 8 (b) Explain the properties of Ferro magnetic materials. 7 Unit — II V (a) Draw the main parts of a DC Generator and explain its working. 8 (b) Explain the classification of DC Compound generators with connection diagrams. 7 VI An 8 Pole generator has an output of 200 A, at 500 V the lap connected armature has 1280 conductors, 160 commutator segments. If the brushes are advanced 4 segments from the no-load neutral axis, estimate the armature demagnetising and cross magnetising ampere turns per pole. 8 (b) What are the different pitches of Armature winding? Explain. 7 Unit — III VII (a) What are the conditions for voltage build-up of a DC shunt Generator? Show diagrams. 7 (b) Explain the method for load sharing of two DC generators. 8 OR VIII (a) Explain the procedure of finding critical field resistance from OCC with figure. 8 (b) What are the application of DC shunt series and compound generators? 7 Unit — IV IX (a) What are the classifications of DC .Motors according to field connection? 7 (b) What are the different speed control methods of DC Motors? Explain. 8 OR (a) Write two applications of shunt series and compound Motors, with reason. 8 X 7 (b) Briefly describe about a permanent magnet DC Motor with figure.