TED	(15)	-4032

(REVISION - 2015)

Reg. No.	
Signature	

FOURTH SEMESTER DIPLOMA EXAMINATION IN ELECTRICAL AND ELECTRONICS ENGINEERING — APRIL, 2017

DIGITAL ELECTRONICS AND MICROPROCESSORS

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer the following questions in one or two sentences. Each question carries 2 marks.
 - 1. Define the term 'Bit' in binary number system. State the possible values it can take.
 - Identify the two gates represented by 1 and 2 in the figure below. Write the Boolean expression for the output Y.

- 3. Draw the circuit symbols of Positive and Negative edge triggered JK Flip Flops.
- 4. Give two examples for sequential logic devices.
- 5. State the reason that 8085 microprocessor is called an 8 bit microprocessor.

 $(5 \times 2 = 10)$

PART—B

(Maximum marks: 30)

- II Answer any five questions from the following. Each question carries 6 marks.
 - 1. Convert the hex number (F8E6.39)₁₆ to decimal number. Show the steps.
 - 2. Diagrammatically represent the basic gates and explain the operations with truth table.
 - With the help of the logic diagram and truth table describe the operation of a
 positive edge triggered clocked R-S flip-flop with ACTIVE HIGH R and S inputs.
 - 4. Apply De Morgan's Theorems to the following expression and simplify it.

$$(\overline{AB} + \overline{CD} + EF)$$

	5.	A data 1011 has to be stored in a register using a Parallel in Parallel Out Shift register. Draw the schematic diagram of this Shift register using a negative edge triggered D Flip Flop and explain its operation.	13
	6.	Construct a MOD 8 asynchronous Binary Down counter using negative edge-triggered <i>JK</i> flip-flops and write its count sequence.	
	7.	Explain the different buses used in 8085 microprocessor system. $(5 \times 6 =$	30)
		PART — C	
		(Maximum marks : 60)	
	(A	nswer one full question from each unit. Each full question carries 15 marks.)	
		Unit — I	
III	(a)	Execute the following operation in binary. Show all the conversion steps. $(6.375)_{10} \times (2.625)_{10}$	
	(b)	Draw the logic implementation of following output expression using basic gates. $V = \overline{A} P C \cdot (\overline{A} + \overline{A} P)$	
		$Y = \overline{A}BC (\overline{A + D})$	(
n,		OR	
IV	(a)	Execute the following operation in One's Compliment Method. Convert the result back to decimal number. (Use 8 bit format)	
		(i) $(72)_{10} - (48)_{10}$ (ii) $(48)_{10} - (72)_{10}$	9
	(b)	Convert the following decimal numbers to equivalent binary numbers. Show the steps (100.6) ₁₀	6
		Unit — II	
V	(a)	Draw the logic diagram of a JK Master Slave Flip Flop and explain its operation with truth table for master and slave Flip Flops.	6
	(b)	Write down Boolean expressions representing the SUM and CARRY outputs for a Half adder circuit. Draw a suitable combinational circuit to implement the design using basic gates.	9
		OR	
VI	(a)	Draw the logic diagram of a 4 × 1 multiplexer and write its Truth Table. Implement it using basic gates.	9
	(b)		
		$Y = \overline{A}$. \overline{B} . $C + \overline{A}$. \overline{B} . $\overline{C} + \overline{A}$. \overline{B} . $C + A$. B . C	6

Unit — III

VII Organize a BCD Ripple UP counter using negative edge-triggered J-K flip-flops with 15 waveforms and count sequence.

1a

(ii) MVI

MOV

6