\qquad
\qquad

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE - APRIL, 2018
 ELECTRICAL POWER UTILISATION

[Time : 3 hours

(Maximum marks : 100)
PART - A
(Maximum marks : 10)

I Answer all questions in one or two sentences. Each question carries 2 marks.

1. List properties of a good heating element.
2. What are the applications of dielectric heating ?
3. List major parts of an electric drive.
4. Define schedule speed.
5. Select the type of electric braking suitable for machine tools.
PART - B
(Maximum marks : 30)

11 Answer any five of the following questions. Each question carries 6 marks.

1. Explain high frequency eddy current heating method.
2. Describe seam welding process.
3. List major applications of electrolysis.
4. What is a group drive ? List advantages of group drive.
5. Compare the Speed - Time curves of a main line service and sub urban service.
6. What is tractive effort of a train ? Write expression for total tractive effort:
7. Name the DC motor used for traction purpose. Explain its suitability for traction.

$$
(5 \times 6=30)
$$

PART - C
(Maximum marks : 60)
(Answer one full question from each unit. . Each full question carries 15 marks.)
UnIt - I

III (a) With the help of neat sketch explain the working of coreless type induction furnace.
(b) What are the industrial applications of induction heating ?

Or
IV (a) Explain the principle of dielectric heating.
(b) With neat diagram explain butt welding process.

Unit - II
V (a) What is a multi motor drive ? List advantages and disadvantages ?
(b) Explain advantages of electric drives.

Or
VI (a) Explain what happens when electric current is passed through copper sulphate
solution.
(b) List applications of electric drives.
UNIT - III

VII (a) Derive the expression for energy output from driving axle of an electric train.
(b) A suburban train run with an average speed of $36 \mathrm{~km} / \mathrm{h}$ between two stations 1.8 km apart values of acceleration and retardation are $1.8 \mathrm{~km} / \mathrm{h} / \mathrm{s}$ and $3.6 \mathrm{~km} / \mathrm{h} / \mathrm{s}$ respectively. Calculate the maximum speed of the train assuming trapezoidal speed-time curve.
Or

VIII (a) Sketch the simplified speed - time curve and hence derive the expression for
crest speed.
(b) An electric train has an average speed of 42 kmph on a level track between stops 1400 m apart. It is accelerated at $1.7 \mathrm{~km} / \mathrm{h} / \mathrm{s}$ and braked at $3.3 \mathrm{~km} / \mathrm{h} / \mathrm{s}$. Draw the speed-time curve for the train indicating values of maximum speed, acceleration, free running and braking periods.
UNIT - IV
IX (a) Describe various methods of electric braking. 9
(b) List advantages of electric braking. 6
OR
X (a) State desirable properties of traction motors. 8
(b) Explain regenerative braking scheme of DC shunt motor. 7

